Backpropagation2 [Theme 07] Back Propagation 설명 안녕하세요 pulluper 입니다. 😄 이번 포스팅은 드디어 Back Propagation에 대하여 다뤄보도록 하겠습니다. 지난 시간에 다룬 MLP에 대하여 이어서 다뤄보겠습니다. 다음과 같은 MLP 가 있다고 하겠습니다. 이를 그림으로 표시하면 다음과 같습니다. 2개의 feature 를 갖는 하나의 input을 네트워크에 넣었을때의 그림입니다. x1, x2 에서 h1, h2, h3 로 갈때를 수식으로 표현하면 다음과 같습니다. (h1, h2, h3) = $\phi$ (XW + B) 로 표현할 수 있습니다. $\phi$ 는 activation function 입니다. 혹은 다음과 같이 XW + B 를 matrix multiplication으로 한번에 표현 할 수 있습니다. 이런 방식으로 전체 네트워크 o.. 2023. 1. 25. [Theme 00] Basic Machine Learning 정리 scheduler! [Theme 01] What is the AI [Theme 02] Linear Regression [Theme 03] Logistic Regression [Theme 04] Softmax Regression [Theme 05] MLE [Theme 06] XOR / Perceptron / MLP [Theme 07] Back Propagation/Gradient Descent [Theme 08] Machine Learning tip [Theme 09] Convolution 2023. 1. 24. 이전 1 다음