반응형
정확한 디버깅을 위해서 먼저 프로그램 (코드) 를 돌려보기로 한다.
참고 : https://github.com/ShoufaChen/DiffusionDet
0. 도커 세팅
# 베이스 이미지
FROM pytorch/pytorch:2.4.0-cuda12.4-cudnn9-devel
# 필수 패키지 설치
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y \
git \
nano \
wget \
libgl1-mesa-glx \
libglib2.0-0 \
libxcb-xinerama0-dev \
&& rm -rf /var/lib/apt/lists/*
1. 깃 클론
git clone https://github.com/ShoufaChen/DiffusionDet
2. requirements 세팅하기
2.1. detectron2
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
3. 데이터셋 준비 (symbolic link)
mkdir -p datasets/coco
ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017
ln -s /usr/src/data/coco/annotations datasets/coco/annotations
ln -s /usr/src/data/coco/images/train2017 datasets/coco/train2017
ln -s /usr/src/data/coco/images/val2017 datasets/coco/val2017

4. pretrained-model 준비
mkdir models
cd models
# ResNet-101
wget https://github.com/ShoufaChen/DiffusionDet/releases/download/v0.1/torchvision-R-101.pkl
# Swin-Base
wget https://github.com/ShoufaChen/DiffusionDet/releases/download/v0.1/swin_base_patch4_window7_224_22k.pkl
cd ..
학습 잘 된다.

반응형
'Object Detection' 카테고리의 다른 글
| 도커환경에서 ultralytics yolo v11 학습 및 검증 (0) | 2025.01.16 |
|---|---|
| [Object Detection] torchvision faster rcnn 튜토리얼 (0) | 2023.05.06 |
댓글